Use of a Variant to Measure New Events Converging

variables: a, b, c IL out II in ML out MI in when when when when b > 0a > 0invariants: a+b < da = 0c > 0inv1 1: $a \in \mathbb{N}$ c = 0then then inv1 2: $b \in \mathbb{N}$ then a := a - 1then b := b - 1inv1 3: $c \in \mathbb{N}$ c := c - 1b := b + 1a := a + 1c := c + 1inv1 4: a+b+c=nend end end end **inv1**_**5**: $a = 0 \lor c = 0$

Variants for New Events: 2 · a + b

<init, ML_out, ML_out, IL_in, IL_out, IL_in, IL_out, ML_in, ML_in > a = $a \doteq$ a =a =a =b = b = b = b = b = b = h = b = b = C = C =c = c = C =c = C =C =**V** = **V** = **v** = **V** = **V** = **V** = **V** =

occurrences of concrete events

variant: 2 · a + b

Use of a Variant to Measure New Events Converging

fixed

variables: a, b, c

invariants:

inv1_1 : $a \in \mathbb{N}$ inv1_2 : $b \in \mathbb{N}$

inv1_3 : $c \in \mathbb{N}$

b =

h =

inv1_4: a+b+c=ninv1_5: $a=0 \lor c=0$

b =

ML_out **when** a + b < d c = 0**then**

a := *a* + 1 **end**

ML_in when c > 0

then c := c - 1 end

b =

b =

b =

IL_in when a > 0

end

b =

then *a* := *a* − 1

b := b + 1

variant: 2 · a + b

end

Variants for New Events: 2 · a + b

b =

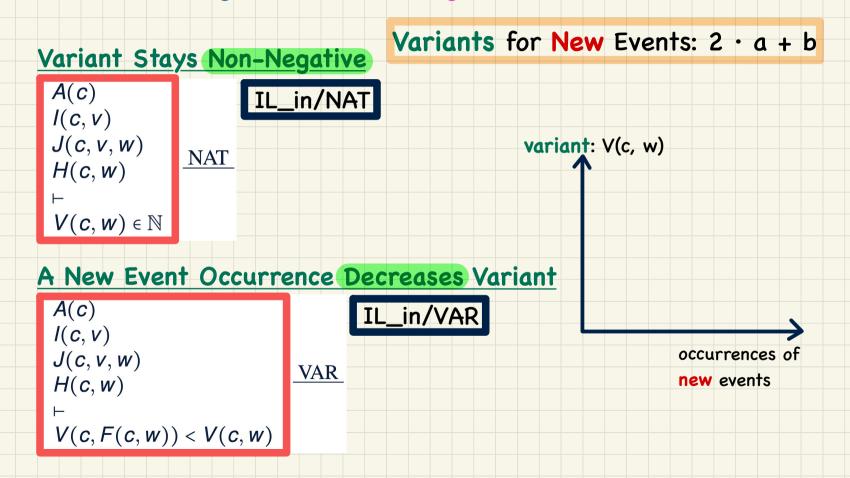
C = C = C = C = C = C = C = C =

v = v = v = v = v = v = v =

Whenb > 0
a = 0 **then**b := b − 1
c := c + 1

occurrences of concrete events

PO of Convergence/Non-Divergence/Livelock Freedom



Idea of Relative Deadlock Freedom

$$A(c)$$

$$I(c, v)$$

$$J(c, v, w)$$

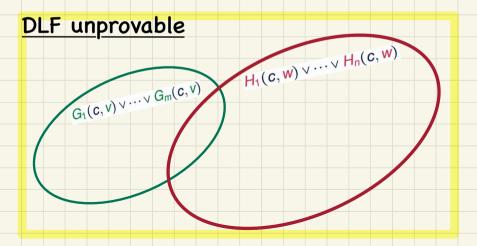
$$G_1(c, v) \lor \cdots \lor G_m(c, v)$$

$$\vdash$$

$$H_1(c, w) \lor \cdots \lor H_n(c, w)$$

DLF

DLF provable H₁(c, w) v ... v H_n(c, w) G₁(c, v) v ... v G_m(c, v)



PO of Relative Deadlock Freedom

Abstract m0

variables: ninvariants: n < dthen n < dthen n := n + 1end

ML_in when n > 0 then n := n − 1 end

ML in

IL_out

when

b > 0

when

Concrete m1

invariants: inv1_1 : $a \in \mathbb{N}$ inv1_2 : $b \in \mathbb{N}$ inv1_3 : $c \in \mathbb{N}$ inv1_4 : a + b + c = ninv1_5 : $a = 0 \lor c = 0$

variables: a, b, c

c > 0 **then** *c* := *c* − 1 **end**

IL_in
when
a > 0
then
a := a - 1
b := b + 1
end

a = 0 **then** b := b - 1 c := c + 1 **end**

A(c) I(c, v) J(c, v, w) $G_1(c, v) \lor \cdots \lor G_m(c, v)$ \vdash $H_1(c, w) \lor \cdots \lor H_n(c, w)$

Example Inference Rules

$$\frac{H, \neg P \vdash Q}{H \vdash P \lor Q} \quad \mathbf{OR} \cdot \mathbf{R}$$

$$\frac{H,P,Q \vdash R}{H,P \land Q \vdash R} \quad \textbf{AND_L}$$

$$\frac{H \vdash P \qquad H \vdash Q}{H \vdash P \land Q} \quad \mathbf{AND}_{\underline{\mathsf{R}}}$$

Discharging POs of m1: Relative Deadlock Freedom

Part 1

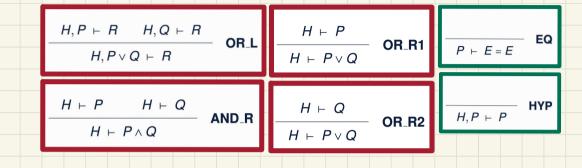
$$\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON$$

$$\frac{H(\mathbf{F}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{F})}{H(\mathbf{E}), \mathbf{E} = \mathbf{F} \vdash P(\mathbf{E})} \quad \mathbf{EQ_LR}$$

$$\frac{H, \neg P \vdash Q}{H \vdash P \lor Q} \quad \mathbf{OR} . \mathbf{R}$$

```
d \in \mathbb{N}
d > 0
n \in \mathbb{N}
n \le d
a \in \mathbb{N}
b \in \mathbb{N}
c \in \mathbb{N}
a+b+c=n
a = 0 \lor c = 0
n < d \lor n > 0
       a+b < d \land c = 0
 \vee c > 0
 \vee a > 0
 \vee b > 0 \land a = 0
```

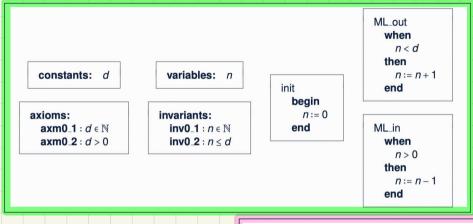
Discharging POs of m1: Relative Deadlock Freedom



$$d > 0$$

 $b = 0 \lor b > 0$
 $b < d \land 0 = 0$
 $\lor b > 0 \land 0 = 0$

Initial Model and 1st Refinement: Provably Correct



Abstract m0

init

b := 0

c := 0

end

Concrete m1

Correctness Criteria:

- + Guard Strengthening
- + Invariant Establishment
- + Invariant Preservation
- + Convergence
- + Relative Deadlock Freedom

variables: a,b,cconstants: dinvariants: $inv1.1: a \in \mathbb{N}$ $inv1.2: b \in \mathbb{N}$ $inv1.3: c \in \mathbb{N}$ inv1.4: a+b+c=n $inv1.5: a=0 \lor c=0$

variants: 2 · a + b when a+b < d c=0 then a:=a+1 end

ML_out

ML_in when c > 0 then c := c - 1 end

IL_in
 when
 a > 0
 then
 a := a - 1
 b := b + 1
end

IL_out when b > 0 a = 0 then b := b − 1 c := c + 1 end